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Poincaré-Cartan Integral Variants and Invariants
of Nonholonomic Constrained Systems
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Usually there does not exist an integral invariant of Poieg2artan’s type for a non-
holonomic system because a constraint submanifold does not admit symplectic structure
in general. An integral variant of PoineaCartan’s type, depending on the nonholon-
omy of the constraints and nonconservative forces acting on the system, is derived from
D’Alembert-Lagrange principle. For some nonholonomic constrained mechanical sys-
tems, there exists an alternative Lagrangian which determines the symplectic structure
of a constraint submanifold. The integral invariants can then be constructed for such
systems.

1. INTRODUCTION

Poincag and Poinca-Cartan integral invariants of dynamical systems have
found important applications in quantum theory, analytical mechanics, statistical
mechanics, and hydrodynamics. Usually the integral invariants exist for conserva-
tive holonomic systems because such systems admit a nsyanalecticstructure
(Arnold, 1978; Liu, 1991; Marsden, 1994). The extension of the theory of integral
invariants tononholonomicconstrained systems was made by Li and Li (1990).
However, they introduced integral invariants of Poimec@artan’s type for non-
holonomic constrained systems by improperly extending the Hamilton’s stationary
principle to nonholonomic constrained systems. As is well known, the equa-
tions of motion for the nonholonomic constrained systems, such as Routh’s equa-
tions and Chaplygin’s equations, obey D’Alembert-Lagrange’s principle instead
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of Hamilton's stationary principle. These two kinds of principles are not equivalent
for nonholonomic constrained systems (Cardin and Favretti, 1996; Marle, 1998;
Mei, 2000).

In this paper, we prove that in the original choice of dynamical function and
coordinates with physical meaning, there exatsintegral variantof Poincag-
Cartan’s type, depending on the nonholonomy of the constraints and noncon-
servative forces acted on the nonholonomic systems. In this sense, the integral
invariants for constrained systems exist if and only if the constraints are inte-
gral and the forces acted on the systems are conservative. In a previous paper
(Guoet al, 1999), we have pointed that the existence of Poizaitan integral
invariants of a dynamical system is closely related with Lagrangian inverse prob-
lem. If a Chaplygin’s nonholonomic constrained system whose equations of mo-
tion decouple with the constraints satisfies the Helmholtz's conditionsr(€zai”
and Raada, 1999; Morando and Vignolo, 1998), there exists an alternative
Lagrangian for such a system. An alternative Lagrangian can also be constructed
if a nonholonomic constrained system is of a kind of adjoint symmetry (Sarlet
et al, 1995). For these cases, the constraint submanifolds are of symplectic struc-
ture defined by the alternative Lagrangians. Therefore, Pangad Poinca-
Cartan integral invariants can be constructed for such nonholonomic constrained
systems.

In Section 2, an integral variant of Poincare-Cartan’s type for a nhonholo-
nomic nonconservative system is derived from D’Alembert-Lagrange’s principle.
In Section 3, we introduce integral invariants based on Lagrangian inverse problem
for nonholonomic systems. An example is illustrated in the last section.

2. INTEGRAL VARIANTS OF NONCONSERVATIVE
NONHOLONOMIC SYSTEMS

We denote the underlying mathematical model of nonconservative or time-
dependent mechanics by a contact manifelg¢ TM whereM is an-dimensional
configuration manifold with local coordinatés '} (i = 1, 2,..., n). Suppose
that the system be subjected to affine nonholonomic constraints

faZAlq(t!qj)qi+Aa(thi)=0! (05:11 2,...,g,g<n) (1)

where the matrix &) is of maximum rank. The conservative part of the system
is described by a continuous, regular LagrandianR x TM — R, thatis,L €
£2(TM x R), 82L/3G'dG’ +# 0. The components of nonconservative generalized
forces are represented gy (t, q!, §i).

We begin with the D’Alembert-Lagrange principle

(8L d oL

@ g @) =0 @
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wheresq' are virtual displacements and the Einstein’s sumation convention is
understood. For a nonconservative and nonholonomic system of Chetaev gype,
the Routh equations of motion are

daL aL
= Qi 4 A AY 3
dtag  oq Qi + 2 A 3)
Equation (2) is equivalent to
d /oL _ oL [d . -
L__ - I i y ! — 4
it (5590 ) + 57 | groa) —ad | =0 @

Considering the relation between simultaneous variation and nonsimultaneous
variation A(x) = §(*) + %(*) At, the last equation becomes
aL  d aL

d o i
AL—FLa(At)— <a—q| - &3_(]I+QI +)»aA1>8q

+g [a—l,‘.Aq‘ — (qia—l,‘. — L> At]
dt | ag' aq'
+ o [sa - o] - @od —amsd @
aq' dt
Now we introduce ldlder’s definition of variatiody, that is,
Sl — S Oua) =0, Atdug =0 ®)

The nonsimultaneous variation is then denotedApy Among the trajectory of
motion

d d[aoL i poL .
ApL +L—(A —— | Z=And = ld=—=-L1IA _ 0 i 7
HL + dt( Ht) dt|:aq' HO (q oG ) Ht] Qidug  (7)
Taking an integral of it with timé from t; to t, and noticing that
[AHL + L%(AHt)] dt = An(Ldt) (8)
then
te aL ;oL 2
Ap(Ldt) = | —Axq' — (G '— — L ) Aut
[ o= [t = (o35 ) o]
1 .
— | (Qidug')dt C)
t

Considering a tube on manifoRl x TM, satisfying the constraint conditions
(1), which is constituted by the trajectaries of motion, two closed cuBseasnd
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C, which encircle the tube are respectively represented by

t=t@, d=a) d=d) (10a)

t=t(), q=00) d =@ (10b)
where a(0<a <p) is a parameter satisfyingy'(t,a)le=0 = ¢ (t),
g'(t,o)le=o = q'(t). Supposex = 0 anda = p represent the same point on

C: (or Cy). Integrating Eq. (9) with respect toover the interval [0p], we obtain

[ = (a5 -1 ) aw]
_ ?2 (/tt AH(Ldt)> +/: <?€ Qi(SHqi)dt (11)

Considering relation (8), divide both sides of the last equationthby ¢;) and
take limit (t; — t;) — 0O, thenan integral variantof Poincag-Cartan’s type can be
obtained

%ﬁ [%AHqi (q % — L) AHI] ?ﬁ (AHL + L—(AHt)>
+§ Qg (12)

where | = f. [fAud' — (¢' 5 — L)Ant] is called a PoincarCartan’s
integral of a nonconservatlve nonholonomic system. We have proved the
following:

Proposition 1. Denote by C on manifold R TM a closed curve encircled a
tube of trajectaries of motion for a nonconservative nonholonomic constrained
system. Along this curve there exists an integral variant of PoiwGartan’s

type (Eqg. 12).

For nonholonomic constrained systems, D’Alembert-Lagrange principle is
not equivalent to Hamilton action principle, that is, the equations of motion can
not be derived from a stationary action principle. Thus the mteﬁraAH(L dt)
is not a tatal differential of in general. The integraf. Q; Suq' vanishes if and
only if Q; are components of conservative forces. Therefore, under the assump-
tion of physical definition of Lagrangian and variables, there does not exist any
Poincag-Cartan’s integral invariant for a nonconservative nonholonomic con-
strained systemin general unless the system s conservative and there is a stationary
action for it.
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In the reference (Li and Li, 1990), the authors confused the differences be-
tween the D’Alembert-Lagrange principle (2) and Hamilton action principle for
nonholonomic systems and began with the latter, took the Holder’s variation as a
free variation and used Routh equations to described the trajectary of motion which
is in fact derived from D’Alembert-Lagrange principle. Then an integral invari-
ant of Poincag-Cartan’s type was obtained. This process means that the system
is a conservative holonomic system, which obviously conflicts with the original
assumption.

3. LAGRANGIAN INVERSE PROBLEM
OF NONHOLONOMIC SYSTEMS

Lagrangian inverse problem is very important for searching an integral in-
variant of a nonholonomic constrained system because the existence of an integral
invariant is closely related to the symplectic structure of a tangent bundle which
can be defined by a Lagrangian of the system.

In this section, we suppose that the system be subjgdittear nonholonomic
constraints:

¢’ = BJ(t,9°)d” + B(t, 9°) (13)

This construction distinguishes two lots of coordinates,} and{g”}. Assume

that the configuration manifoldl is of a fibration structure over a manifold of
dimensionn — g + 1 with local coordinate$t, q°}. The constraints determine a
constraint submanifol of 1-jet manifoldJ; M (Sarletet al., 1995). The equations

of motion of constrained mechanical systems, called Generalized Chaplygin’'s
equations, are given by

R T SV Y i (14)
dt\ ag° aq° 7oqf 7 \ag”f

where functionl’ =i*L € C3(N) (i : N - J;M)and
B B
th = ﬁ_ﬁ + Baﬁ_BWﬁ g~
o aqu 3qa 23 3qa 4 aqa

oBf  oBf 0B/ 0B*?
+H == - + | B*—= - B? (15)
ot 9q° aq” aq”
In general, Eq. (14) fog® cannot be recast into the form of genuine Euler-
Lagrange equations with a Lagrangian not dependent on the coordifakbes

cause of the nonintegrability of the differential constraints, otherwise it is called
Lagrangian
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In order to get a Lagrangian for the nonholonomic system, suppose that the
dynamical equations decouple with the constraints, that is,

aL’ dBY 9B
= 0, =
ag”P oqf  ogf

It is easy to verify the following:

-0 (16)

Theorem 2 Ifthe dynamical equations of a nonholonomic system decouple with
the constraints and, = tfi*(3L/¢”) satisfies the Helmholtz conditigns
AW, AV,
— + —
99, 99"
v, 0¥, 1d (0w, oY,
agqe  agr  2dt \ag®  ag-

-0 (17a)

(17b)

then this system can be reduced into a Lagrangian one

Proof: If the conditions of the theorem are satisfied, then there exist some func-
tion ® € C*(N) such that (Mei, 1985)

d ad Lo}
v, = ()4 22 18
" dt(aq”)%qu (18)

Therefore, Eq. (14) reduce to

E(E) _ ot =0 (29)
dt\aq° aq°
with a new Lagrangiaih. = L' + &.

This method can be extended to some cases where the Helmholtz conditions
can not be satisfied by. If there exists a functiod, onN satisfying the dynam-
ical equations such that the suin+ W’ satisfies the Helmholtz conditions, the
system can still be recasted into a Lagrangian one as just described.

Usually a Lagrangian system admits adjoint symmetries. If a constrained
system admits some special adjoint symmetries, then an alternative Lagrangian
can be realized for this system. We introduce a dynamical vector field on the
constraint manifoldN

_ E ' i Bqye B i I’-i
Z_at+q aq”+(ng +B)aqﬂ+f T (20)
whose integral curves represent the solutions of Eq. (14)a@lf@nt symmetries
of Z are defined by invariant 1-formgse A(N), thatis,iz8 =0, £z = 0.1fds
is of maximum ranle and there is a functioR € C°°(N) such that

B =dF — S(dZ(F)) — Z(F) dt (21)
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whereS = 9/09° x 67 is a vertical endomorphism on the bundie N — M,
then there exists an alternative regular Lagrangiéf) for the system (Sarlet,
1995).

If the mixed system of differential equations [Egs. (13) and (14)] decou-
ple into constraint equations and Lagrange equationg/fothen there exists a
presymplectic submanifol®R x TQ, of constraint manifoldN where Qo C Mg
is a configuration submanifold with local coordinatgs whose presymplectic
structureQ* = —d#@, - is determined by the dynamical functidri where

0* = S(dL*) + L* dt (22)

The dynamical equations of the system can also be derived from the variation of
the actionf;(L* - y) dt on such a presymplectic submanifold, wheres the lift
ofy :[a,b] > Mpto R x TQp.
A HamiltonianH* = p,q° — L* (L* = Z(F) or L' + @) can be defined
by Legendre transformatidfL : R x TQy — R x T*Qq in the standard fashion,

where the momentum ip, = FL(Q%) = 3L There exist a natural symplectic

form i
wo=dp, \ dg” —dH* A dt (23)
and the canonical equations can be formulated by
i X0 =0, ix,.dt =0 (24)

where Xy~ = 9/0t +4°9/99° + p,9/9dp, is a Hamilton vector fieldon R x
T*Qo . wp is an absolute invariant 2-form ofy- becauseCx,,. wg = dix,,.wo +
ix,.dwg =0, andfy = p,dg” — H* dt is the relative invariant 1-form oKy-
becauselLx .0, = 0. Without proof we have the following:

Proposition 3. Denote by Fthe flow of X;-. ¢; and ¢ are supposed to be two
closed curves encircling a tube of flow én the symplectic manifold R T* Q.
The Poincae-Cartan integral invariant obviously existhat is

yg p,dg” — H*dt :yg p,dg’ — H*dt (25)
C1 C2

4. AN ILLUSTRATIVE EXAMPLE

Consider the problem of a vertically rolling disk on a rough horizontal
plane with unit mass and radil& Appropriate generalized coordinates are the
coordinatesy, y) of the centre of mass of the disk and the azimuthal angles, angle
Y determining the position of the plane of the disk and apglescribing its inter-
nal rotation. The condition of rolling without slipping gives rise to nonholonomic
constraints of the form

x=(Rcosy)p, y=(Rsiny)y
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with the nonzero componenBj = R cosy, B = R sin .

The dimension of the manifold®, andM are 2 and 4, respectively, with
notational identificationgg? = (X, y), 9° = (¥, ). The components of tenstf
read

X = —Ry siny, tf = Rp siny, tY = —Ry cosy, tj = —Rp cosy,

The Lagrangiarh. and its pull back td\ are, respectively,
1. . 1 . 1 .5 1 . 1 .5
L=20%+y)+ 2119+ = L' = Z(R? + 11)¢* + =
2( +Y)+21§0+22¢, 2( +1)€0+2210

wherel; and |, are moments of inertia. The system obviously is a Chaplygin’s
system. It is easy to verify thak, = 0, ¥, = 0. Therefore, Eq. (19) is satisfied
by L" and the second-order equations goand+ys simply read

1 . .
E(R2+Il)¢20, oy =0

with solutionsy = ¢t + ¢y, ¥ = wt + Yo Wherecy, ¢, w, andyy are arbitary
constants. Then the solution of first-order conditionx is % sin (wt + o),
y = —82 cos @t + o).

There exists a symplectic submanifdl@, c N on which the closed two-
form is defined byL’. Taking Legendre transformatidL : TQy — T*Qq in the
standard fashion, the momenta are givenphy= dL'/d¢ = (R? + I1)cy, py =
L'/9y = lo0. Then the Hamiltonian i+’ = p,¢ + py ¥ — L' = p2/2(R? +
l1) + pi/ZIz. There exists a natural symplectic form diQg

wo =dp, /\ dp +dp, A\ dy

which is invariant along the phase flo in T*Qp. The corresponding 1-form
6o = p, dy + py dy is a relative invariant along;.

Denote byc a closed curve encircling a tube of phase flevon the symplec-
tic manifoldT* Qo described bg; = po Cos«, Co = 8200 SiN o, w = 8300 COS 3,
Yo = d4p0 SIN 5 Where po, 82, 83, andd, are constants (& o < 4r). Then the
Poinca¥ integral invariant exists, that is,

%pw de + py dy = %(RZ-F [1)ci(tda + do) + % low (t dw + dro)

c

A
= / (R? + 11)po COSa(—pot Sin & + 820 COSat) dex
0

+1/4HI5 cosa<t8 sina+8 cosa)d
2 s 20300 > 300 5 400 > o

= 27 (R? + 11)8205 + 712838408



Integral Variants and Invariants of Nonholonomic Systems 1205

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China
(Grant No. 19972010), the Natural Science Foundation of Liaoning Province of
China (Grant No. 002083), the Natural Science Foundation of Henan Province of
China (Grant No. 984053100, 998040080), and the Science Research Foundation
of Liaoning Educational Commitee of China (Project 990111004, 20021004).

REFERENCES

Arnold, V. I. (1978).Mathematical Methods of Classical Mechani&pringer-Verlag, New York.

Cardin, F. and Favretti, M. (1996). On Nonholonomic and Vaknomic Dynamics of Mechanical Systems
with Nonintegralble Constraintdpurnal of Geometry and Physiés, 295-325.

Carifiena, J. F. and Rada, M. F. (1999). Helmholtz Conditions and alternative Lagrangians: Study of
an Integrable ldhon-Heiles Systemmternational Journal of Theoretical Physig8, 2049-2061.

Guo, Y. X., Shang, M., and Mei, F. X. (1999). PoineaCartan Integral Invariants of Nonconservative
Dynamical Systemdnternational Journal of Theoretical Physié8, 1017-1027.

Li, Z. P. and Li, X. (1990). Generalized Noether Theorem and Poilessriant for Nonconservative
Nonholonomic Systemsnternational Journal of Theoretical Physi@9, 765-771.

Liu, D., Luo, Y.,and Xin, S. Y. (1991). About the Basic Integral Variants of Holonomic Nonconservative
Dynamical System#cta Mechanica Sinic&, 178-185.

Marle, C. M. (1998). Various Approaches to Conservative and Nonconservative Nonholonomic
SystemsReports on Mathematical Physidg, 211-229.

Marsden, J. E. (1994)ntroduction to Mechanics and Symmet8pringer-Verlag, New York.

Mei, F. X. (1985).Foundations of Mechanics of Nonholonomic SystdPnass of Beijing Institute of
Technology, Beijing (in Chinese).

Mei, F. X. (2000). On the Integration Method of Nonholonomic Dynamiicggrnational Journal of
Non-Linear Mechanic85, 229-238.

Morando, P. and Vignolo, S. (1998). A Geometric Approach to Constrained Mechanical Systems,
Symmetris and Inverse Problenidgurnal of Physics A: Mathematical and Gene#8dl, 8233—
8245.

Sarlet, W., Cantrijn, F., and Saunders, D. J. (1995). A geometrical Framework for the Study of Non-
holonomic Lagrangian Systendgurnal of Physics A: Mathematical and Gene28| 3253-3268.



