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Usually there does not exist an integral invariant of Poincar´e-Cartan’s type for a non-
holonomic system because a constraint submanifold does not admit symplectic structure
in general. An integral variant of Poincar´e-Cartan’s type, depending on the nonholon-
omy of the constraints and nonconservative forces acting on the system, is derived from
D’Alembert-Lagrange principle. For some nonholonomic constrained mechanical sys-
tems, there exists an alternative Lagrangian which determines the symplectic structure
of a constraint submanifold. The integral invariants can then be constructed for such
systems.

1. INTRODUCTION

Poincaré and Poincar´e-Cartan integral invariants of dynamical systems have
found important applications in quantum theory, analytical mechanics, statistical
mechanics, and hydrodynamics. Usually the integral invariants exist for conserva-
tive holonomic systems because such systems admit a naturalsymplecticstructure
(Arnold, 1978; Liu, 1991; Marsden, 1994). The extension of the theory of integral
invariants tononholonomicconstrained systems was made by Li and Li (1990).
However, they introduced integral invariants of Poincar´e-Cartan’s type for non-
holonomic constrained systems by improperly extending the Hamilton’s stationary
principle to nonholonomic constrained systems. As is well known, the equa-
tions of motion for the nonholonomic constrained systems, such as Routh’s equa-
tions and Chaplygin’s equations, obey D’Alembert-Lagrange’s principle instead
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of Hamilton’s stationary principle. These two kinds of principles are not equivalent
for nonholonomic constrained systems (Cardin and Favretti, 1996; Marle, 1998;
Mei, 2000).

In this paper, we prove that in the original choice of dynamical function and
coordinates with physical meaning, there existsan integral variantof Poincaré-
Cartan’s type, depending on the nonholonomy of the constraints and noncon-
servative forces acted on the nonholonomic systems. In this sense, the integral
invariants for constrained systems exist if and only if the constraints are inte-
gral and the forces acted on the systems are conservative. In a previous paper
(Guoet al., 1999), we have pointed that the existence of Poincar´e-Cartan integral
invariants of a dynamical system is closely related with Lagrangian inverse prob-
lem. If a Chaplygin’s nonholonomic constrained system whose equations of mo-
tion decouple with the constraints satisfies the Helmholtz’s conditions (Cari˜nena
and Ra˜nada, 1999; Morando and Vignolo, 1998), there exists an alternative
Lagrangian for such a system. An alternative Lagrangian can also be constructed
if a nonholonomic constrained system is of a kind of adjoint symmetry (Sarlet
et al., 1995). For these cases, the constraint submanifolds are of symplectic struc-
ture defined by the alternative Lagrangians. Therefore, Poincar´e and Poincar´e-
Cartan integral invariants can be constructed for such nonholonomic constrained
systems.

In Section 2, an integral variant of Poincare-Cartan’s type for a nonholo-
nomic nonconservative system is derived from D’Alembert-Lagrange’s principle.
In Section 3, we introduce integral invariants based on Lagrangian inverse problem
for nonholonomic systems. An example is illustrated in the last section.

2. INTEGRAL VARIANTS OF NONCONSERVATIVE
NONHOLONOMIC SYSTEMS

We denote the underlying mathematical model of nonconservative or time-
dependent mechanics by a contact manifoldR× TM whereM is an-dimensional
configuration manifold with local coordinates{t, qi } (i = 1, 2, . . . , n). Suppose
that the system be subjected to affine nonholonomic constraints

f α = Aαi (t, q j )q̇i + Aα(t, qi ) = 0, (α = 1, 2,. . . , g, g < n) (1)

where the matrix (Aαi ) is of maximum rank. The conservative part of the system
is described by a continuous, regular LagrangianL : R× TM→ R, that is,L ∈
L

2(TM × R), ∂2L/∂q̇i ∂q̇ j 6= 0. The components of nonconservative generalized
forces are represented byQi (t, q j , q̇ j ).

We begin with the D’Alembert-Lagrange principle(
∂L

∂qi
− d

dt

∂L

∂q̇i + Qi

)
δqi = 0 (2)
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whereδqi are virtual displacements and the Einstein’s sumation convention is
understood. For a nonconservative and nonholonomic system of Chetaev gype,
the Routh equations of motion are

d

dt

∂L

∂q̇i −
∂L

∂qi
= Qi + λαAαi (3)

Equation (2) is equivalent to

δL − d

dt

(
∂L

∂q̇i δq
i

)
+ ∂L

∂q̇i

[
d

dt
(δqi )− δq̇i

]
= 0 (4)

Considering the relation between simultaneous variation and nonsimultaneous
variation1(∗) = δ(∗)+ d

dt (∗) 1t , the last equation becomes

1L + L
d

dt
(1t) =

(
∂L

∂qi
− d

dt

∂L

∂q̇i + Qi + λαAαi

)
δqi

+ d

dt

[
∂L

∂q̇i 1qi −
(

q̇i ∂L

∂q̇i − L

)
1t

]
+ ∂L

∂q̇i

[
δq̇i − d

dt
(δqi )

]
− Qi δq

i − λαAαi δq
i (5)

Now we introduce H¨older’s definition of variationδH , that is,

δHq̇i − d

dt
(δHqi ) = 0, Aαi δHqi = 0 (6)

The nonsimultaneous variation is then denoted by1H. Among the trajectory of
motion

1HL + L
d

dt
(1Ht) = d

dt

[
∂L

∂q̇i 1Hqi −
(

q̇i ∂L

∂q̇i − L

)
1Ht

]
− Qi δHqi (7)

Taking an integral of it with timet from t1 to t2 and noticing that[
1HL + L

d

dt
(1Ht)

]
dt = 1H(L dt) (8)

then ∫ t2

t1

1H(L dt) =
[
∂L

∂q̇i 1Hqi −
(

q̇i ∂L

∂q̇i − L

)
1Ht

]∣∣∣∣t2
t1

−
∫ t2

t1

(Qi δHqi ) dt (9)

Considering a tube on manifoldR× TM, satisfying the constraint conditions
(1), which is constituted by the trajectaries of motion, two closed curvesC1 and
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C2 which encircle the tube are respectively represented by

t = t1(α), qi = qi
1(α), q̇i = q̇i

1(α) (10a)

t = t2(α), qi = qi
2(α), q̇i = q̇i

2(α) (10b)

where α(0≤ α ≤ ρ) is a parameter satisfyingqi (t, α)|α=0 = qi (t),
q̇i (t, α)|α=0 = q̇i (t). Supposeα = 0 andα = ρ represent the same point on
C1 (or C2). Integrating Eq. (9) with respect toα over the interval [0,ρ], we obtain∮

C2

[
∂L

∂q̇i 1Hqi −
(

q̇i ∂L

∂q̇i − L

)
1Ht

]
−
∮

C1

[
∂L

∂q̇i 1Hqi −
(

q̇i ∂L

∂q̇i − L

)
1Ht

]
=
∮

C

(∫ t2

t1

1H(L dt)

)
+
∫ t2

t1

(∮
C

Qi δHqi

)
dt (11)

Considering relation (8), divide both sides of the last equation by (t2− t1) and
take limit (t2− t1)→ 0, thenan integral variantof Poincaré-Cartan’s type can be
obtained

d

dt

∮
C

[
∂L

∂q̇i 1Hqi −
(

q̇i ∂L

∂q̇i − L

)
1Ht

]
=
∮

C

(
1HL + L

d

dt
(1Ht)

)
+
∮

C
Qi δHqi (12)

where I = ∮C

[
∂L
∂q̇i 1Hqi − (q̇i ∂L

∂q̇i − L
)
1Ht

]
is called a Poincar´e-Cartan’s

integral of a nonconservative nonholonomic system. We have proved the
following:

Proposition 1. Denote by C on manifold R× TM a closed curve encircled a
tube of trajectaries of motion for a nonconservative nonholonomic constrained
system. Along this curve there exists an integral variant of Poincaré-Cartan’s
type (Eq. 12).

For nonholonomic constrained systems, D’Alembert-Lagrange principle is
not equivalent to Hamilton action principle, that is, the equations of motion can
not be derived from a stationary action principle. Thus the integral

∫ t2

t1
1H(L dt)

is not a tatal differential ofα in general. The integral
∮

C Qi δHqi vanishes if and
only if Qi are components of conservative forces. Therefore, under the assump-
tion of physical definition of Lagrangian and variables, there does not exist any
Poincaré-Cartan’s integral invariant for a nonconservative nonholonomic con-
strained system in general unless the system is conservative and there is a stationary
action for it.
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In the reference (Li and Li, 1990), the authors confused the differences be-
tween the D’Alembert-Lagrange principle (2) and Hamilton action principle for
nonholonomic systems and began with the latter, took the Holder’s variation as a
free variation and used Routh equations to described the trajectary of motion which
is in fact derived from D’Alembert-Lagrange principle. Then an integral invari-
ant of Poincar´e-Cartan’s type was obtained. This process means that the system
is a conservative holonomic system, which obviously conflicts with the original
assumption.

3. LAGRANGIAN INVERSE PROBLEM
OF NONHOLONOMIC SYSTEMS

Lagrangian inverse problem is very important for searching an integral in-
variant of a nonholonomic constrained system because the existence of an integral
invariant is closely related to the symplectic structure of a tangent bundle which
can be defined by a Lagrangian of the system.

In this section, we suppose that the system be subject tog linear nonholonomic
constraints:

q̇β = Bβσ (t, qs)q̇σ + Bβ(t, qs) (13)

This construction distinguishes two lots of coordinates,{qσ } and{qβ}. Assume
that the configuration manifoldM is of a fibration structure over a manifoldM0 of
dimensionn− g+ 1 with local coordinates{t, qσ }. The constraints determine a
constraint submanifoldNof 1-jet manifoldJ1M (Sarletet al., 1995). The equations
of motion of constrained mechanical systems, called Generalized Chaplygin’s
equations, are given by

d

dt

(
∂L ′

∂q̇σ

)
− ∂L ′

∂q̇σ
− Bβσ

∂L ′

∂qβ
− tβσ i ∗

(
∂L

∂q̇β

)
= 0 (14)

where functionL ′ = i ∗L ∈ C2(N) (i : N → J1M) and

tβσ =
[(
∂Bβσ
∂qµ
− ∂Bβµ
∂qσ

)
+
(

Bαµ
∂Bβσ
∂qα
− Bασ

∂Bβµ
∂qα

)]
q̇µ

+
(
∂Bβσ
∂t
− ∂Bβ

∂qσ

)
+
(

Bα
∂Bβσ
∂qα
− Bασ

∂Bβ

∂qα

)
(15)

In general, Eq. (14) forqσ cannot be recast into the form of genuine Euler-
Lagrange equations with a Lagrangian not dependent on the coordinatesqβ be-
cause of the nonintegrability of the differential constraints, otherwise it is called
Lagrangian.
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In order to get a Lagrangian for the nonholonomic system, suppose that the
dynamical equations decouple with the constraints, that is,

∂L ′

∂qβ
= 0,

∂Bασ
∂qβ
= ∂Bα

∂qβ
= 0 (16)

It is easy to verify the following:

Theorem 2. If the dynamical equations of a nonholonomic system decouple with
the constraints and9µ = tβµ i ∗(∂L/∂q̇β) satisfies the Helmholtz conditions,

∂9µ

∂q̇σ
+ ∂9σ
∂q̇µ
= 0 (17a)

∂9µ

∂qσ
− ∂9σ
∂qµ
= 1

2

d

dt

(
∂9µ

∂q̇σ
− ∂9σ
∂q̇µ

)
(17b)

then this system can be reduced into a Lagrangian one.

Proof: If the conditions of the theorem are satisfied, then there exist some func-
tion8 ∈ C∞(N) such that (Mei, 1985)

9µ = d

dt

(
∂8

∂q̇µ

)
+ ∂8

∂qµ
(18)

Therefore, Eq. (14) reduce to

d

dt

(
∂ L̄

∂q̇σ

)
− ∂ L̄

∂qσ
= 0 (19)

with a new Lagrangian̄L = L ′ +8.
This method can be extended to some cases where the Helmholtz conditions

can not be satisfied by9. If there exists a function9 ′µ onN satisfying the dynam-
ical equations such that the sum9 +9 ′ satisfies the Helmholtz conditions, the
system can still be recasted into a Lagrangian one as just described.

Usually a Lagrangian system admits adjoint symmetries. If a constrained
system admits some special adjoint symmetries, then an alternative Lagrangian
can be realized for this system. We introduce a dynamical vector field on the
constraint manifoldN

Z = ∂

∂t
+ q̇σ

∂

∂qσ
+ (Bβσ q̇σ + Bβ

) ∂

∂qβ
+ f µ

∂

∂q̇µ
(20)

whose integral curves represent the solutions of Eq. (14). Theadjoint symmetries
of Z are defined by invariant 1-formsβ ∈∧(N), that is,i Zβ = 0,LZβ = 0. If dβ
is of maximum rankε and there is a functionF ∈ C∞(N) such that

β = d F − S(dZ(F))− Z(F) dt (21)
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whereS= ∂/∂q̇σ × θσ is a vertical endomorphism on the bundleη : N → M ,
then there exists an alternative regular LagrangianZ(F) for the system (Sarlet,
1995).

If the mixed system of differential equations [Eqs. (13) and (14)] decou-
ple into constraint equations and Lagrange equations forqσ , then there exists a
presymplectic submanifoldR× TQ0 of constraint manifoldN whereQ0 ⊂ M0

is a configuration submanifold with local coordinatesqσ , whose presymplectic
structureÄ∗ = −dθL∗ is determined by the dynamical functionL∗ where

θ∗ = S(dL∗)+ L∗ dt (22)

The dynamical equations of the system can also be derived from the variation of
the action

∫ b
a (L∗ · γ̄ ) dt on such a presymplectic submanifold, where ¯γ is the lift

of γ : [a, b] → M0 to R× TQ0.
A Hamiltonian H ∗ = pσ q̇σ − L∗ (L∗ = Z(F) or L ′ +8) can be defined

by Legendre transformationFL : R× TQ0→ R× T∗Q0 in the standard fashion,
where the momentum ispσ = FL(q̇σ ) = ∂L∗

∂q̇σ . There exist a natural symplectic
form

ω0 = dpσ
∧

dqσ − d H∗
∧

dt (23)

and the canonical equations can be formulated by

i XH∗ω0 = 0, i XH∗dt = 0 (24)

where XH∗ = ∂/∂t + q̇σ ∂/∂qσ + ṗσ ∂/∂pσ is a Hamilton vector fieldon R×
T∗Q0 . ω0 is an absolute invariant 2-form ofXH∗ becauseLXH∗ω0 = diXH∗ω0+
i XH∗dω0 = 0, andθ0 = pσdqσ − H∗ dt is the relative invariant 1-form ofXH∗

becausedLXH∗ θ0 = 0. Without proof we have the following:

Proposition 3. Denote by Ft the flow of XH∗ . c1 and c2 are supposed to be two
closed curves encircling a tube of flow Ft on the symplectic manifold R× T∗Q0.
The Poincaŕe-Cartan integral invariant obviously exists, that is,∮

c1

pσdqσ − H∗ dt =
∮

c2

pσdqσ − H∗ dt (25)

4. AN ILLUSTRATIVE EXAMPLE

Consider the problem of a vertically rolling disk on a rough horizontal
plane with unit mass and radiusR. Appropriate generalized coordinates are the
coordinates (x, y) of the centre of mass of the disk and the azimuthal angles, angle
ψ determining the position of the plane of the disk and angleϕ describing its inter-
nal rotation. The condition of rolling without slipping gives rise to nonholonomic
constraints of the form

ẋ = (R cosψ)ϕ̇, ẏ = (R sin ψ)ϕ̇
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with the nonzero componentsBx
ϕ = R cosψ, Bx

ϕ = R sin ψ .
The dimension of the manifoldsQ0 andM are 2 and 4, respectively, with

notational identifications:qβ = (x, y), qσ = (ψ, ϕ). The components of tensortβσ
read

t x
ϕ = −Rψ̇ sin ψ, t x

ψ = Rϕ̇ sin ψ, t y
ϕ = −Rψ̇ cosψ, t y

ψ = −Rϕ̇ cosψ,

The LagrangianL and its pull back toN are, respectively,

L = 1

2
(ẋ2+ ẏ2)+ 1

2
I1ϕ̇

2+ 1

2
I2ψ̇

2
, L ′ = 1

2
(R2+ I1)ϕ̇2+ 1

2
I2ψ̇

2

where I1 and I2 are moments of inertia. The system obviously is a Chaplygin’s
system. It is easy to verify that9ϕ = 0,9ψ = 0. Therefore, Eq. (19) is satisfied
by L ′ and the second-order equations forϕ andψ simply read

1

2
(R2+ I1) ϕ̈ = 0, I2ψ̈ = 0

with solutionsϕ = c1t + c0, ψ = ωt + ψ0 wherec1, c0, ω, andψ0 are arbitary
constants. Then the solution of first-order conditions isx = Rc1

ω
sin (ωt + ψ0),

y = − Rc1
ω

cos (ωt + ψ0).
There exists a symplectic submanifoldTQ0 ⊂ N on which the closed two-

form is defined byL ′. Taking Legendre transformationFL : TQ0→ T∗Q0 in the
standard fashion, the momenta are given bypϕ = ∂L ′/∂ϕ̇ = (R2+ I1)c1, pψ =
∂L ′/∂ψ̇ = I2ω. Then the Hamiltonian isH ′ = pϕϕ̇ + pψψ̇ − L ′ = p2

ϕ/2(R2+
I1)+ p2

ψ/2I2. There exists a natural symplectic form onT∗Q0

ω0 = dpϕ
∧

dϕ + dpψ
∧

dψ

which is invariant along the phase flowFt in T∗Q0. The corresponding 1-form
θ0 = pϕ dϕ + pψ dψ is a relative invariant alongFt .

Denote byc a closed curve encircling a tube of phase flowFt on the symplec-
tic manifoldT∗Q0 described byc1 = ρ0 cosα, c0 = δ2ρ0 sin α, ω = δ3ρ0 cos α

2 ,
ψ0 = δ4ρ0 sin α

2 whereρ0, δ2, δ3, andδ4 are constants (0≤ α ≤ 4π ). Then the
Poincaré integral invariant exists, that is,∮

c
pϕ dϕ + pψ dψ =

∮
c
(R2+ I1)c1(tdc1+ dc0)+

∮
c

I2ω (t dω + dψ0)

=
∫ 4π

0
(R2+ I1)ρ0 cosα(−ρ0t sin α + δ2ρ0 cosα) dα

+ 1

2

∫ 4π

0
I2δ3ρ0 cos

α

2

(
−tδ3ρ0 sin

α

2
+ δ4ρ0 cos

α

2

)
dα

= 2π (R2+ I1)δ2ρ
2
0 + π I2δ3δ4ρ

2
0
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